Driving Your Next Generation Networks

www.10gtek.com

100GBASE-LR4 CFP4 Optical Transceiver

TR-KC13L -N00

Features


- Hot pluggable CFP4 MSA form factor
- Compliant to IEEE 802.3ba 100GBASE- LR4 and CFP-MSA-CFP4-HW-Specification
- Up to 10km reach for G.652 SMF
- Single +3.3V power supply
- Operating case temperature: 0~70°C
- Transmitter: cooled 4x25Gb/s LAN WDM EML TOSA (1295.56, 1300.05,1304.58, 1309.14nm)
- Receiver: 4x25Gb/s PIN ROSA
- 4x28G Electrical Serial Interface (CEI- 28G-VSR)
- MDIO management interface with digital diagnostic monitoring
- Power consumption less than 6W
- Duplex LC receptacle
- RoHS-6 compliant

Applications

- 100GBASE-LR4 Ethernet
- OTN OTU4

Part Number Ordering Information

TR-KC13L-N00	CFP4 LR4 10km optical transceiver with full real-time digital
	diagnostic monitoring and pull tab

Driving Your Next Generation Networks

www.10gtek.com

1. General Description

This product is a 100Gb/s transceiver module for optical communication applications compliant to 100GBASE-LR4 of the IEEE P802.3ba standard. The module converts 4 input channels of 25Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module de-multiplexes a 100Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 output channels of electrical data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE 802.3ba. The high performance cooled LAN WDM EA-DFB transmitters and high sensitivity PIN receivers provide superior performance for 100Gigabit Ethernet applications up to 10km links and compliant to optical interface with IEEE802.3ba Clause 88 100GBASE-LR4 requirements.

The product is designed with form factor, optical/electrical connection and MDIO interface according to the CFP4 Multi-Source Agreement (MSA). The innovative design has all the fibers inside the CFP4 package configured without any splicing or non-permanent connector. Also, fiber routines are neatly organized and fixed inside a stainless steel container.

2. Functional Description

This product contains a duplex LC connector for the optical interface and a 56-pin connector for the electrical interface. Figure 1 in Section 3 shows the functional block diagram of this product.

Transmitter Operation

The transceiver module receives 4 channels of 25Gb/s electrical data, which are processed by a 4-channel Clock and Data Recovery (CDR) IC that reshapes and reduces the jitter of each electrical signal. Subsequently, each of 4 EML laser driver IC's converts one of the 4 channels of electrical signals to an optical signal that is transmitted from one of the 4 cooled EML lasers which are packaged in the Transmitter Optical Sub-Assembly (TOSA). Each laser launches the optical signal in specific wavelength specified in IEEE802.3ba 100GBASE-LR4 requirements. These 4- lane optical signals will be optically multiplexed into a single fiber by a 4-to-1 optical WDM MUX. The optical output power of each channel is maintained constant by an automatic power control (APC) circuit. The transmitter output can be turned off by TX_DIS hardware signal and/or through MDIO module management interface.

Receiver Operation

The receiver receives 4-lane LAN WDM optical signals. The optical signals are de- multiplexed by

Driving Your Next Generation Networks

www.10gtek.com

a 1-to-4 optical DEMUX and each of the resulting 4 channels of optical signals is fed into one of the 4 receivers that are packaged into the Receiver Optical Sub-Assembly (ROSA). Each receiver converts the optical signal to an electrical signal. The regenerated electrical signals are retimed and de-jittered and amplified by the RX portion of the 4-channel CDR. The retimed 4-lane output electrical signals are compliant with IEEE CAUI-4 interface requirements. In addition, each received optical signal is monitored by the DOM section. The monitored value is reported through the MDIO section. If one or more received optical signal is weaker than the threshold level, RX_LOS hardware alarm will be triggered.

MDIO Interface

The CFP4 module supports the MDIO interface specified in IEEE802.3ba Clause 45. It supports alarm, control and monitor functions via hardware pins and via an MDIO bus. Upon module initialization, these functions are available. CFP4 MDIO electrical interface consists of 6 wires including 2 wires of MDC and MDIO, as well as 3 Port Address wires, and the Global Alarm wire. MDC is the MDIO Clock line driven by host and MDIO is the bidirectional data line driven by both host and module depending upon the data directions. The CFP4 uses pins in the electrical connector to instantiate the MDIO interface as listed in Table 1. MDIO Interface Pins.

Table 1. MDIO Interface Pins

PIN	Symbol	Description		Logic	"H"	"L"
13	GLB_ALRMn	Global Alarm	0	3.3V LVCMOS	ок	Alarm
18	MDIO	Management Data Input Output Bi-Directional Data	I/O	1.2V LVCMOS		
17	MDC	MDIO Clock	I	1.2V LVCMOS		
19	PRTADR0	MDIO port address bit 0	I	1.2V LVCMOS	per MDIO	
20	PRTADR1	MDIO port address bit 1	I	1.2V LVCMOS	document	
21	PRTADR2	MDIO port address bit 2	ı	1.2V LVCMOS		

3. Transceiver Block Diagram

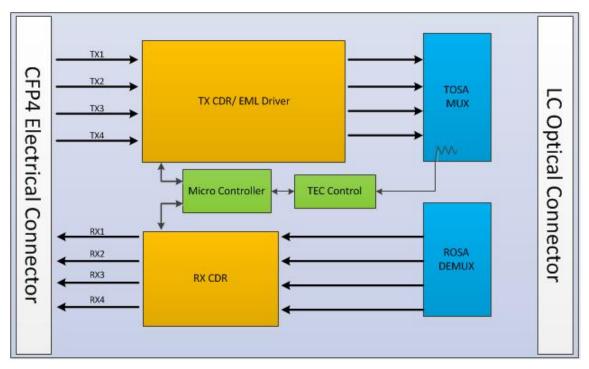


Figure 1. 100G CFP4 LR4 Transceiver Block Diagram

4. Pin Assignment and Description

The CFP4 electrical connector has 56 pins, which are arranged in top and bottom rows. The pin orientation is shown in Figure 2 and the pin map is shown in Table 2. The detailed description of the bottom side pins from pin 1 through pin 28 is shown in Table 3 while the description of the top side pins is shown in Table 4.

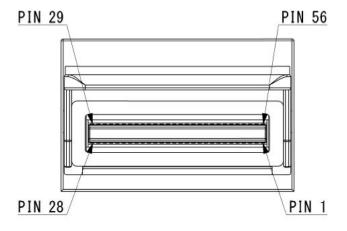


Figure 2. CFP4 Connector Pin Map Orientation

Table 2. Pin Map

	CFP4
	Bottom
1	3.3V_GND
2	3.3V_GND
3	3.3V
4	3.3V
5	3.3V
6	3.3V
7	3.3V GND
8	3.3V_GND
9	VND_IO_A
10	VND_IO_B
11	TX_DIS (PRG_CNTL1)
12	RX_LOS (PRG_ALRM1)
13	GLB_ALRMn
14	MOD_LOPWR
15	MOD_ABS
16	MOD_RSTn
17	MDC
18	MDIO
19	PRTADR0
20	PRTADR1
21	PRTADR2
22	VND_IO_C
23	VND_IO_D
24	VND_IO_E
25	GND
26	(MCLKn)
27	(MCLKp)
28	GND

	CFP4
	Тор
56	GND
55	TX3n
54	TX3p
53	GND
52	TX2n
51	TX2p
50	GND
49	TX1n
48	TX1p
47	GND
46	TX0n
45	TX0p
44	GND
43	(REFCLKn)
42	(REFCLKp)
41	GND
40	RX3n
39	RX3p
38	GND
37	RX2n
36	RX2p
35	GND
34	RX1n
33	RX1p
32	GND
31	RX0n
30	RX0p
29	GND

REFCLK (Optional)

MCLK = TX_MCLK +
RX_MCLK
(Optional)

Table 3. Definition of the Bottom Side Pins from Pin 1 through Pin 28

PIN	Name	I/O	Logic	Description
1	3.3V_GND			3.3V Module Supply Voltage Return Ground, can be separated or tied together with Signal Ground
2	3.3V_GND			
3	3.3V			
4	3.3V			
5	3.3V			
6	3.3V			3.3V Module Supply Voltage
7	3.3V_GND			
8	3.3V_GND			
9	VIND_IO_A	I/ O		Module Vendor I/O A. Do Not Connect

Driving Your Next Generation Networks

www.10gtek.com

10	VIND_IO_B	I/ O		Module Vendor I/O B. Do Not Connect
11	TX_DIS (PRG_CN T L1)	I	LVCMOS w/PUR	Transmitter Disable for all lanes. "1" or NC: Transmitter disabled; "0": transmitter enabled. (Optionally configurable as Programmable Control1 after Reset)
12	RX_LOS (PRG_AL R M1)	0	LVCMOS w/PUR	Receiver Loss of Optical Signal. "1": low optical signal; "0": normal condition (Optionally configurable as Programmable Alarm1 after Reset)
13	GLB_ALRM n	0	LVCMOS	Global Alarm. "0": alarm condition in any MDIO Alarm register; "1": no alarm condition, Open Drain, Pull up Resistor on Host
14	MOD_LOP WR	I	LVCMOS w/PUR	Module Low Power Mode. "1" or NC: module in low power (safe) mode; "0": power-on enabled
15	MOD_ABS	0	GND	Module Absent. "1" or NC: module absent; "0": module present, Pull up resistor on Host
16	MOD_RST n	I	LVCMOS w/PDR	Module Reset. "0": resets the module; "1" or NC: module enabled, Pull down Resistor in Module
17	MDC	I	1.2V CMOS	Management Data Clock (electrical specs as per IEEE Std 802.3-2012)
18	MDIO	l/ O	1.2V CMOS	Management Data I/O bi-directional data (electrical specs as per IEEE Std 802.3ae-2008 and ba-2010)
19	PRTADR0	I	1.2V CMOS	MDIO Physical Port address bit 0
20	PRTADR1	I	1.2V CMOS	MDIO Physical Port address bit 1
21	PRTADR2	I	1.2V CMOS	MDIO Physical Port address bit 2
22	VND_IO_C	I/O		Module Vendor I/O C. Do Not Connect
23	VND_IO_D	I/O		Module Vendor I/O D. Do Not Connect
24	VND_IO_E	I/O		Module Vendor I/O E. Do Not Connect
25	GND			
26	(MCLKn)	0	CML	For optical waveform testing. Not for normal use

Driving Your Next Generation Networks

www.10gtek.com

27	(MCLKp)	0	CML	For optical waveform testing. Not for normal use
28	GND			

Table 4. Definition of Top Side Pins

Tubic 4.	Deminion 0	op	Olac i	1113
PIN	Name		PIN	Name
29	GND		43	(REFCLKp)
30	RX0p		44	GND
31	RX0n		45	TX0p
32	GND		46	TX0n
33	RX1p		47	GND
34	RX1n		48	TX1p
35	GND		49	TX1n
36	RX2p		50	GND
37	RX2n		51	TX2p
38	GND		52	TX2n
39	RX3p		53	GND
40	RX3n		54	TX3p
41	GND		55	TX3n
42	(REFCLKn)		56	GND

5. Recommended Power Supply Filter

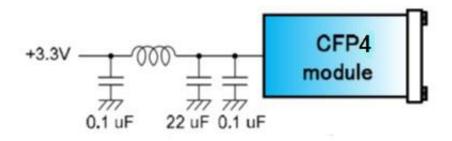


Figure 3. Recommended Power Supply Filter

Driving Your Next Generation Networks

www.10gtek.com

6. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	Ts	-40	85	degC	
Relative Humidity (non-condensation)	RH		85	%	
Operating Case Temperature	TOP	0	70	degC	
Supply Voltage	Vcc	-0.5	3.6	V	
Voltage on LVTTL Input	Vilvttl	-0.5	VCC3+0.3	V	
LVTTL Output Current	lolvttl		15	mA	
Voltage on Open Collector Output	Voco	0	6	V	
Damage Threshold, each Lane	THd	5.5		dBm	1

Notes:

7. Recommended Operating Conditions and Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	TOP	0		70	degC	
Power Supply Voltage	VCC	3.135	3.3	3.465	V	
Data Rate, each Lane			25.78125		Gbps	1
Data Rate, each Lane			27.9525		Gbps	2
Control Input Voltage High		2		Vcc	٧	
Control Input Voltage Low		0		0.8	٧	
				2	%	DC- 1MHz
Power Supply Noise	Vrip			3	%	1- 10MHz
Link Distance with G.652	D			10	km	

Notes:

- 1. 100GBASE-LR4.
- 2. OUT4 with FEC.

^{1.}PIN receiver.

Driving Your Next Generation Networks

www.10gtek.com

8. Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Power Consumption				6.0	W	
Supply Current	Icc			1820	mA	
Low Power Mode Power Dissipation				1.0	W	
		Transmitt	er (each Lan	e)		
Single-ended Input Voltage Tolerance (Note 1)		-0.3		4.0	V	Referred to TP1 signal common
AC Common Mode Input Voltage Tolerance		15			mV	RMS
Differential Input Voltage Swing Threshold		50			mVp p	LOSA Threshold
Differential Input Voltage Swing	Vin,pp	190		700	mVp p	
Differential Input Impedance	Zin	90	100	110	Ohm	
	Red	ceiver (ea	ch Lane)			
Single-ended Output Voltage		-0.3		4.0	V	Referred to signal common
AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	300		850	mVp p	
Differential Output Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	

Notes:

1. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

Driving Your Next Generation Networks

www.10gtek.com

9. Optical Characteristics

CFP4 100GBASE-LR4 & OTU4										
Parameter	Symbol	Min	Typical	Max	Unit	Notes				
	L0	1294.53	1295.56	1296.59	nm					
Lane Wavelength	L1	1299.02	1300.05	1301.09	nm					
Lane wavelength	L2	1303.54	1304.58	1305.63	nm					
	L3	1308.09	1309.14	1310.19	nm					
	Transmitter									
SMSR	SMSR	30			dB					
Total Average Launch Power	PT			10.5	dBm					
Average Launch Power, each Lane	PAVG	-4.3		4.5	dBm					
OMA, each Lane	РОМА	-1.3		4.5	dBm	1				
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			5	dB					
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane		-2.3			dBm	2				
TDP, each Lane	TDP			2.2	dB	2				
Extinction Ratio	ER	4			dB					
RIN20OMA	RIN			-130	dB/Hz					
Optical Return Loss Tolerance	TOL			20	dB					
Transmitter Reflectance	RT			-12	dB					
Eye Mask{X1, X2, X3, Y1, Y2, Y3}		{0.25, 0	.4, 0.45, 0. 0.4}	25, 0.28,		3				
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm					
		Receive	r							
Damage Threshold, each Lane	THd	5.5			dBm					
Total Average Receive Power				10.5	dBm					
Average Receive Power, each Lane		-10.6		4.5	dBm					
Receive Power (OMA), each				4.5	dBm					

Driving Your Next Generation Networks

www.10gtek.com

Lane						
Receiver Sensitivity (OMA), each Lane	SEN			-8.6	dBm	2
Stressed Receiver Sensitivity (OMA), each Lane				-6.8	dBm	2, 4
Difference in Receive Power between any Two Lanes (OMA)	Prx,diff			5.5	dB	
LOS Assert	LOSA		-18		dBm	
LOS Deassert	LOSD		-15		dBm	
LOS Hysteresis	LOSH	0.5			dB	
Receiver Electrical 3 dB upper Cutoff Frequency, each Lane	Fc			31	GHz	
Conditions of Stress Receiver Sensitivity Test (Note 5)						
Vertical Eye Closure Penalty, each Lane			1.8		dB	
Stressed Eye J2 Jitter, each Lane			0.3		UI	
Stressed Eye J9 Jitter, each Lane			0.47		UI	

Notes:

- 1.Even if TDP < 1 dB, the OMA min must exceed the minimum value specified here.
- 2.Only for 100GBASE-LR4.
- 3.See Figure 4 below.
- 4.Measured with conformance test signal at receiver input for BER = 1x10-12.
- 5. Vertical eye closure penalty, stressed eye J2 Jitter, and stressed eye J9 Jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

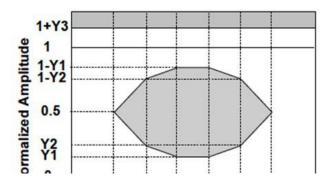


Figure 4. Eye Mask Definition

Driving Your Next Generation Networks

www.10gtek.com

10. Mechanical Dimensions

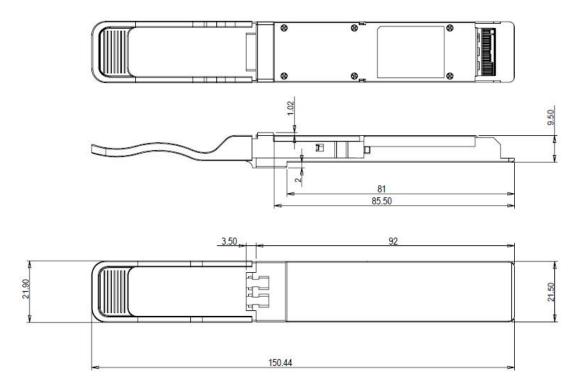


Figure 5. Mechanical Outline

11. ESD

This transceiver is specified as ESD threshold 2kV for all electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

12. Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:1993:+A1:1997+A2:2001. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (July 26, 2001).

Further Information

For further information, please contact info@10gtek.com

Tel: +86 755 2998 8100 Fax: +86 755 6162 4140 Web: www.10gtek.com